The relativistic and radiative corrections to the polarizability of hydrogen-like atoms

Wanping Zhou^{*a,b*}, Xuesong Mei^{*a,c*}, Haoxue Qiao^{*c*}

 ^a School of Physics and Technology, Wuhan University, Wuhan 430000 china
^b Engineering and Technology College, Hubei University of Technology, Wuhan 430000 China
^c Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences, Wuhan 430071 China

The polarizability in atomic physics is important to determining the frequency standard [1], magic wavelengths and the tune-out wavelengths [2,3] of the atom in the optical lattice clock. It is also used to calculating the long-range interactions between atoms [4] in the cold atom research. However the higher order corrections are still researched inadequately [1,5]. In this work, starting from the relativistic polarizability of the Hydrogen-like atoms, we derive the operators of the nonrelativistic leading term and first order perturbation term: relativistic corrections and radiative corrections by applying Nonrelativistic Quantum Electrodynamic approach[6,7]. These correction are the dynamical parts, which dependent on the electric field frequency. The Bethe-logarithm-like correction is also obtained. This study can be helpful in our next step research about blackbody radiation contribution in atomic system, which is based on our previous study [8].

[3] L. J. LeBlanc and J. H. Thywissen, Phys. Rev. A. 75 (2007), 053612.

- [5] K. Pachucki and J. Sapirstein, Phys. Rev. A. 63 (2000), 012504.
- [6] U. D. Jentschura et al., Phys. Rev. A. 72 (2005), 062102.

^[1] G.Porsev and A.Derevianko, Phys. Rev. A. 74 (2006), 020502.

^[2] H. Katori et al., Phys. Rev. Lett. 82 (1999), 1116.

^[4] J. Weineret al., Julienne, Rev. Mod. Phys. 71 (1999), 1.

^[7] M.I. Eides et al., Physics.Reports. 63 (2001), 2-3

^[8] W.P. Zhou et al., J. Phys. B: At. Mol. Opt. Phys. 50 (2017), 105001