Relativistic corrections for the ground state of the hydrogen molecule

Liming Wang ${ }^{a}$, Zong-Chao Yan ${ }^{b, c}$,
${ }^{a}$ Department of Physics, Henan Normal University, Xinxiang, Henan, P. R. China 453007
${ }^{b}$ Department of Physics, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3
${ }^{c}$ State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China and Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China

The Schrödinger equation for the ground state of the hydrogen molecule is solved by the Rayleigh-Ritz variational method in Hylleraas coordinates without using the Born-Oppenheimer approximation. The non-relativistic energy eigenvalue converges to $-1.1640250304(5)$ a.u.. Then the leading order relativistic corrections (including the mass-velocity, Darwin, orbit-orbit, and spin-spin terms) and the relativistic recoil terms are calculated by perturbation method. Together with the QED corrections and higher-order corrections calculated by M. Puchalski, J. Komasa, and K. Pachucki [1], we obtain the dissociation energy of the hydrogen molecule $D_{0}=$ $36118.06947(47) \mathrm{cm}^{-1}$, which agrees with the recent experimental results $36118.06962(37)$ cm^{-1} [2] and $36118.06945(31) \mathrm{cm}^{-1}$ [3].

Table 1: The non-relativistic energy eigenvalue, the α^{2} correction, and the α^{2} contribution to the dissociation energy for the ground state of the hydrogen molecule.

Basis size	Non-relativistic energy (in a.u.)	α^{2} correction (in 10^{-5} a.u.)	α^{2} contribution to the dissociation energy (in cm^{-1})
256	-1.16396658292	-1.0889994	-0.531751
500	-1.16401470197	-1.0912033	-0.526914
912	-1.16402274255	-1.0907043	-0.528009
1570	-1.16402440823	-1.0900571	-0.529429
2570	-1.16402483112	-1.0896291	-0.530369
4050	-1.16402497462	-1.0894402	-0.530783
6150	-1.16402501135	-1.0893610	-0.530957
9070	-1.16402502286	-1.0893157	-0.531056
13020	-1.16402502714	-1.0892881	-0.531117
18270	-1.16402502891		
25100	-1.16402502971		
33870	-1.16402503010	$-1.08924(5)$	$-0.53121(10)$
Extrap.	$-1.1640250304(5)$		

[1] M. Puchalski, J. Komasa, and K. Pachucki, Phys. Rev. A 95, 052506 (2017).
[2] J. Liu et al., J. Chem. Phys. 130, 174306 (2009).
[3] R. K. Altmann et al., Phys. Rev. Lett. 120, 043204 (2018).

