The ALPHATRAP g-Factor Experiment

<u>Andreas Weigel</u>^{a,b}, Ioanna Arapoglou^{a,b}, José R. Crespo López-Urrutia^a, Alexander Egl^{a,b}, Martin Höcker^a, Tim Sailer^{a,b}, Bingsheng Tu^a, Robert Wolf^c, Sven Sturm^a, and Klaus Blaum^a ^a Max Planck Institute for Nuclear Physics, Heidelberg, Germany ^b Fakulty for Physics and Astronomy, University of Heidelberg, Germany ^c ARC Centre of Excellence for Engineered Ouantum Systems, University of Sidney, Australia

ALPHATRAP is a high-precision Penning-trap based experiment dedicated to the exploration of ground-state properties of heavy, highly charged ions (HCI). The major goal of ALPHATRAP is the measurement of the bound-electron gyromagnetic factor, or *g*-factor, which can be predicted to very high precision in the framework of bound-state quantum electrodynamics (BS-QED). The comparison of the experimental results with recent theoretical calculations will not only serve as a sensitive test of BS-QED, but also yields a new approach for the determination of fundamental constants such as the electron mass or the fine structure constant α .

The measurement of the bound-electron *g*-factor of a single HCI is performed in an improved cryogenic double Penning-trap setup, utilizing the continuous Stern-Gerlach effect. For injection of externally produced HCI up to 208 Pb⁸¹⁺ the ALPHATRAP experiment is coupled to various ion-sources, including the Heidelberg Electron-Beam Ion Trap. The ALPHATRAP apparatus including beamline, trap tower and electronics was successfully commissioned with single 12 C⁵⁺ and 40 Ar¹³⁺ ions, and is in preparation for its first *g*-factor measurement. This poster will give an overview of the experimental setup.