Guiding and manipulating Rydberg positronium using inhomogeneous electric fields

A. M. Alonso, B. S. Cooper, A. Deller, L. Gurung, S. D. Hogan and D. B. Cassidy

Department of Physics and Astronomy, University College London
Gower Street, London, WC1E 6BT, UK

The short ground-state lifetime of Positronium (Ps) makes it challenging to perform precision-spectroscopy studies that require long interaction times. However, when excited to Rydberg states the annihilation rate of Ps becomes negligible [1], and the lifetime is dominated by fluorescence to low lying states. In addition, Rydberg Stark states with large Stark energy shifts have significant electric dipole moments which provide a mechanism by which forces can be applied to Ps atoms using inhomogeneous electric fields [2].

In a recent series of experiments we selectively excited individual Stark-states of Ps [3], guided the atoms using inhomogeneous electric fields in an atomic guide [4], and modified the guide to select a portion of the velocity distribution of the atoms with kinetic energies of \(\sim 45\) meV [5]. Having a beam of slow Rydberg Ps atoms will lead to a number of applications including trapping Ps, measuring the Rydberg constant in a purely leptonic system [6], scattering and merged beams experiments, and potential antimatter gravity measurements.

Figure 1: (Left) Trajectory simulation for Ps in the ground state (a), \(n = 10\) (b) and guided \(n = 10\) with inhomogeneous electric fields. (Center) Experimental setup and detector position. (Right) Measured and calculated fluorescence lifetimes of Rydberg states ranging \(n = 10\) to 19.


