The $\mu\mu$ tron physics program

V. P. Druzhinin^a, A. I. Milstain^{a,b}, <u>S. S.Gribanov</u>^{a,b} ^a Budker Institute of Nuclear Physics ^b Novosibirsk State University

The construction of the low-energy e^+e^- collider ($\mu\mu$ tron) operating near the muon-pair production threshold begins in 2018 at BINP (Novosibirsk). The collider parameters and configuration (a luminosity of 8×10^{31} cm⁻²c⁻¹), an center-of-mass energy spread of 400 keV, and beams collision with a large crossing angle) allow to perform experiments on study of dimuonium properties. The dimuonium is the $\mu^+\mu^-$ bound state that has not yet been observed. At $\mu\mu$ tron it will be possible to detect about 40 thousand dimuonium atoms per year (10⁷ s). In this report we describe the physics program of $\mu\mu$ tron.

^[1] A. Bogomyagkov et al., arXiv:1708.05819 [physics.acc-ph].