Higher-order finite-nuclear-size contributions in light muonic atoms

Savely G. Karshenboim^{*a,b,c*}, Evgeny Yu. Korzinin^{*d,c*}, Valery A. Shelyuto^{*d,c*}, Vladimir G. Ivanov^{*c*} (alternative to coauthors) on behalf of the something collaboration

^a Ludwig-Maximilians-Universität, Fakultät für Physik, 80799 München, Germany
^b Max-Planck-Institut für Quantenoptik, Garching, 85748, Germany
^c Pulkovo Observatory, St.Petersburg, 196140, Russia
^d D. I. Mendeleyev Institute for Metrology, St.Petersburg, 190005, Russia

We discuss the finite-nuclear-size contributions to the Lamb shift in a light muonic atom up to the order $\alpha^6 m$. The related corrections have a different Z dependence and different order in mR_N . The consideration is done within the external field approximation. We also found the leading logarithmic finite-nuclear-size contribution in the next order. It is of the order $\alpha(Z\alpha)^6 \ln^2(Z\alpha)(mR_N)^2 m$ and is comparable with some $\alpha^6 m$ finite-size corrections. A special attention is paid to higherorder effects in muonic hydrogen.