g-factor of middle-Z lithiumlike and boronlike ions

 <u>D. A. Glazov</u>^a, A. V. Volotka^{a,b}, V. A. Agababaev^{a,c}, D. V. Zinenko^a, V. M. Shabaev^a, I. I. Tupitsyn^a, G. Plunien^d
^a Department of Physics, St. Petersburg State University, Universitetskaya 7/9, 199034 St. Petersburg, Russia
^b Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena, Germany
^c St. Petersburg Electrotechnical University "LETI", Professor Popov st. 5, 197376 St. Petersburg, Russia
^d Institut für Theoretische Physik, Technische Universität Dresden,

Mommsenstraße 13, D-01062 Dresden, Germany

Combined experimental and theoretical studies of the g factor of few-electron ions have resulted in the most accurate to date value of the electron mass [1] and can serve for an independent determination of the fine structure constant α [2, 3]. We present the improved theoretical values for the g factor of middle-Z lithiumlike and boronlike ions. Reevaluation of the higher-order manyelectron contributions within the newly developed approach allows us to reach the uncertainty of the order of 10^{-9} for lithiumlike ions. Comparison with the recent measurements for lithiumlike silicon and calcium provides the most stringent to date test of the many-electron bound-state QED effects in the presence of magnetic field [4, 5, 6]. For boronlike ions, the rigorous evaluation of the order of 10^{-6} . The obtained results disagree with the ones of Ref. [7].

^[1] S. Sturm *et al.*, Nature **506** (2014) 467.

^[2] V. M. Shabaev *et al.*, Phys. Rev. Lett. **96** (2006) 253002.

^[3] V. A. Yerokhin et al., Phys. Rev. Lett. 116 (2016) 100801.

^[4] A. Wagner *et al.*, Phys. Rev. Lett. **110** (2013) 033003.

^[5] A. V. Volotka et al., Phys. Rev. Lett. 112 (2014) 253004.

^[6] F. Köhler et al., Nature Communications 7 (2016) 10246.

^[7] J. P. Marques et al., Phys. Rev. A 94 (2016) 042504.