Cold muonium atoms for future atomic physics and gravity experiments

A. Antognini^{*a,b*}, P. Crivelli^{*a*}, K. Kirch^{*a,b*}, D. Taqqu^{*a*}, M. Bartkowiak^{*b*}, A. Knecht^{*b*}, N. Ritjoho^{*b*}, D. Rousso^{*b*}, R. Scheuermann^{*b*}, A. Soter^{*b*}, M. F. L. De Volder^{*c*}, D. M. Kaplan^{*d*}, T.J. Phillips ^{*d*}

^a Institute for Particle Physics and Astrophysics, ETH Zurich, 8093 Zurich, Switzerland

^b Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland

^c Department Of Engineering, University of Cambridge,

17 Charles Babbage Road, Cambridge, UK

^d Illinois Institute of Technology, Chicago, IL 60616 USA

We are investigating methods to create a novel muonium (Mu) source, based on $\mu^+ \rightarrow Mu$ conversion near to the surface of superfluid helium (SFHe). This source would have the potential of providing high brightness atomic beams for next generation Mu experiments, *e.g.* to increase precision of present Mu spectroscopy results [1, 2]. We are also investigating the feasibility of using such sources for measuring the gravitational interaction of Mu. The positive muon (μ^+) which is dominating the Mu mass is not only an elementary antiparticle, but a second-generation lepton too. This makes a gravity experiment highly motivated [3], and complementary to gravitational studies of antihydrogen [4, 5, 6] and positronium [7].

State-of-the-art Mu sources (like silica aerogel, mesoporous SiO₂) emit Mu atoms with a large (thermal) energy distribution, and wide ($\sim \cos \theta$) angular distribution. Cooling of these porous samples below 100 K results in rapidly declining numbers of vacuum-emitted muonium due to decreased mobility, and atoms sticking to the pore walls [8]. The advantage of using superfluid helium for Mu production at T < 0.3 K temperatures is the expected large chemical potential $(E/k_B \sim 270 \text{ K})$ of the atom. This implies that in the vicinity of the surface, Mu would be ejected with relatively high ($\sim 6 \text{ mm/}\mu s$) velocities from the bulk to near-vacuum even at the lowest temperatures, while transverse momentum would remain low due to the cold media [9]. In this talk, methods and challenges to create such SFHe Mu sources, the present status, and the feasibility of an antimatter gravity experiment will be discussed.

^[1] Meyer, V. et al. Physical Review Letters 84, 1136 (2000)

^[2] Liu, W. et al. Physical Review Letters 82, 711 (1999)

^[3] Kirch, K. and Khaw, K. S. In International Journal of Modern Physics: Conference Series 30 1460258 (World Scientific, 2014)

^[4] Charman, A. et al. (Collaboration ALPHA). Nature Communications 4, 1785 (2013)

^[5] Scampoli, P. and Storey, J. Modern Physics Letters A 29, 1430017 (2014)

^[6] Perez, P. and Sacquin, Y. Classical and Quantum Gravity 29, 184008 (2012)

^[7] Cassidy, D. and Hogan, In International Journal of Modern Physics: Conference Series, 30, 1460259 (World Scientific, 2014)

^[8] Antognini, A. et al. Physical Review Letters 108, 143401 (2012)

^[9] Taqqu, D. Physics Procedia 17, 216 223 (2011)