The ALPHATRAP g-Factor Experiment

<u>Martin Höcker</u>^a, Ioanna Arapoglou^a, José R. Crespo López-Urrutia^a, Alexander Egl^a, Tim Sailer^a, Andreas Weigel^a, Robert Wolf^{a,b}, Sven Sturm^a and Klaus Blaum^a
^a Max-Planck-Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg
^b now at: ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, The University of Sydney, NSW Australia

The ALPHATRAP experiment, located at the Max-Planck-Institute for Nuclear Physics in Heidelberg, Germany, aims to measure the *g*-factor of electrons in highly-charged ions with fractional uncertainties of 10^{-11} or below. This allows tests of bound-state quantum electrodynamics (BS-QED) in the extreme field region, for example by measuring the *g*-factor of the bound-electron of 208 Pb⁸¹⁺ in the 10^{16} V/cm field of the nucleus, and comparing it to theoretical predictions. It is a follow-up experiment to the Mainz electron *g*-factor experiment, which provided the most stringent of BS-QED [1] and the most accurate measurement of the electron mass [2].

The highly charged ions are bred in external electron-beam ion traps and transported through a room-temperature-to-4K beamline into a double-Penning-trap system. The trap system allows microwave and laser access for manipulating the motion and spin-state of trapped ions. An additional external ion source delivers ${}^{9}\text{Be}^{+}$ ions, which can be trapped simultaneously, laser-cooled with a 313 nm laser, and used for sympathetic cooling of the highly-charged ions. Trap characterization measurements using externally loaded ions demonstrated single-ion detection, sufficient stability of the trapping fields, and excellent vacuum conditions of better than 10^{-17} mbar. Further tests of laser- and microwave-manipulation of trapped ions are currently under way. An overview of the experiment will be given and progress towards a first measurement on the bound-electron *g*-factor of ${}^{40}\text{Ar}^{13+}$ will be discussed.

^[1] S. Sturm et al., Physical Review Letters 107 (2011) 023002.

^[2] S. Sturm et al., Nature 506 (2014) 467-470.