Hydrogen molecular ions and fundamental constants


Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-PSL University, Collège de France, Case 74, 4 place Jussieu, 75005 Paris, France
Université d’Evry-Val d’Essonne, Boulevard François Mitterrand, 91025 Evry, France
Bogolyubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia
LaserLaB and Department of Physics & Astronomy, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

High-precision spectroscopy of hydrogen molecular ions has been proposed more than four decades ago as a way to determine the proton-to-electron mass ratio $m_p/m_e$ [1]. This idea has not lost its relevance today [2], even considering the precision achieved in recent measurements of the electron and proton masses [3], but needs to be reanalyzed in the light of the current debate on the proton radius [4].

We have shown [5] that combined measurements in $\text{H}_2^+$ and $\text{HD}^+$ could be used to cross-check the proton/deuteron radii and Rydberg constant. To that end the theoretical accuracy should be improved to a few $10^{-12}$; recent progress in the calculation of $m\alpha^8$-order QED corrections [6] has brought us closer to this goal. The most appropriate ro-vibrational transitions, experimental methods by which they can be measured, and experimental status will be discussed. Finally, the prospects of using hydrogen molecular ions as probes of a possible time variation of $m_p/m_e$ will be reviewed [7].