Laser spectroscopy of cooled antiprotonic helium atoms

Masaki Hori^a on behalf of the ASACUSA collaboration

^a Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany

The Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA) collaboration at the Antiproton Decelerator facility of CERN is carrying out precise laser spectroscopy experiments on antiprotonic helium (\bar{p} He⁺ $\equiv \bar{p}$ + He²⁺ + e⁻) atoms [1, 2, 3]. Employing buffergas cooling techniques in a cryogenic gas target, samples of atoms were cooled to temperature T = 1.5-1.7 K, thereby reducing the Doppler width in the single-photon resonance lines [3]. By comparing the results with three-body quantum electrodynamics calculations, the antiprotonto-electron mass ratio was determined as $M_{\overline{p}}/m_e = 1836.1526734(15)$. Besides providing a consistency test of CPT symmetry, the results have recently been used to set constraints on any exotic fifth force that may exist at the ~ 1 Å length scale [4, 5, 6, 7]. Further improvements in the experimental precision are currently being attempted.

- [5] J. Murata, S. Tanaka, Class. Quantum Grav. **32** (2015) 033001.
- [6] P. Brax, S. Fichet, G. Pignol, arXiv:1710.00850 (2017)
- [7] F. Ficek et al., arXiv:1801.00491 (2018)

^[1] V.I. Korobov, L. Hilico, J.-P. Karr, Phys. Rev. Lett. 112 (2014) 103003.

^[2] V.I. Korobov, L. Hilico, J.-P. Karr, Phys. Rev. A 89 (2014) 032511.

^[3] M. Hori et al., Science 371 (2016) 610.

^[4] E.J. Salumbides, W. Ubachs, V.I. Korobov, J. Mol. Spect. 300 (2014) 65.